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Overview

Graph convolutional networks (GCN) are characterized by
(spatial /spectral) graph diffusion operations [1,2].

Cellular sheaves generalize graph diffusion and characterize relationships.

Sheaf Neural Networks generalize GCNs via sheat diffusion.

Sheat Neural Networks allow for GCN-like computations over graphs
with asymmetric/non-constant relations or varying node features.

1.  Zhou, lie, et al. "Graph neural networks: A review of methods and applications." arXiv preprint arXiv:1812.08434 (2018).
2. Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In 5th International Conference on Learning Representations, ICLR 2017



Graph Convolutional Networks

Given input feature matrix X of size N, x N and adjacency matrix Z

GraphConv(A)(X) = p(ZX A)
where A of size N2, x N2% is a parameter matrix.

Each layer is a one-hop diffusion step according to local connectivity.
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Cellular Sheaves Characterize Relations

Cellular sheaves describe relationships, not just connections.
Given undirected graph G, a cellular sheaf F is defined by:

- a vector space F(v) for each vertex v of G,
- a vector space F(e) for each edge e of G, and

- a linear map Fy,q. : F(v) — F(e) for each incident vertex-edge pair v e
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Sheaf Neural Networks

Assume NN, nodes in the graph each with Ng.,; k-dimensional features.

Concatenate node features into input matrix X of size Nyk X Neat -
SheafConv(A, B)(X) = p(Dx(I ® B)XA)

A (N2 x Ne'Y and B (k x k) are learnable parameters.
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Increased Expressivity

Sheat convolution respects non-constant Sheaf neural networks outperform GCNs
and asymmetric relational data. on signed graphs (see paper for details).
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Unfortunately, few semi-supervised graph
datasets admit non-trivial sheaf structure.
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Can also learn the sheaf structure during «:
training—an exciting direction for future *¢ |
work.
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More ideas from cellular sheaf theory may
be exploited for relational learning.
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Thank You!

Special thanks to the Topological Data Analysis and Beyond
organizers: https://tda-in-ml.github.io/organisers

The Sheat Neural Networks paper can be found at:
https://openreview.net /forum?id=GgcglJsTS8HD

Jakob Hansen: https://www.math.upenn.edu/~jhansen

Thomas Gebhart: https://www.gebhartom.com
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