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* SVD / PCA Intro
* Low-dimensional principal component structure in NSD

* High-dimensional principal component structure in NSD
(Stringer et al.)

e Future Work

Stringer, Carsen, et al. "High-dimensional geometry of population responses in visual cortex." Nature 571.7765 (2019): 361-365



Singular Value Decomposition (SVD)

e Given data matrix X € R™"*P, we can factorize X = UXVT.
« U,V are orthogonal.
« ¥ € R"*P is a diagonal matrix of singular values o; = 3, ;.

* Factorizes a linear transformation into a rotation/reflection, a
scaling, and another rotation /reflection.

Lucas Vieira https://commons.wikimedia.org/w/index.php?curid=114164



Principal Component Analysis (PCA)

e Let X be mean-centered column-wise (or z-scored).
« XTX is then the empirical covariance matrix.

« We can factorize the covariance XTX = VXTUTUXLVT = VX2VT
e V and X can be used to find directions of maximal variance.

e Can also be used to project into lower-dimensional space.

 Fitting an ellipsoid, where each axis represents a principal

component.
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(looking at) Low-Dimensional
Structure in NSD



Focus on VI'C

b 33 DGR DY ¥ e o 9L

Map voxel BOLD responses to
vertices via nearest-neighbor,
averaging across cortical depth.
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Dimensionality
Reduction: Vertex
Loadings on Image PCs
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Dimensionality Reduction: Vertices in Image Space
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Correlate Responses with

COCO Categories

PC2
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(looking at) High-Dimensional Structure in
NSD



A Higher-level View
ARTICLE

https://doi.org/10.1038/541586-019-1346-5

High-dimensional geometry of
population responses in visual cortex

Carsen Stringer'%%#, Marius Pachitariu®?#*, Nicholas Steinmetz*®, Matteo Carandini*’ & Kenneth D. Harris?7*

A neuronal population encodes information most efficiently when its stimulus responses are high-dimensional and
uncorrelated, and most robustly when they are lower -dimensional and correlated. Here we analysed the dimensionality of
the encoding of natural images by large populations of neurons in the visual cortex of awake mice. The evoked population
activity was high-dimensional, and correlations obeyed an unexpected power law: the nth principal component variance
scaled as 1/n. This scaling was not inherited from the power law spectrum of natural images, because it persisted
after stimulus whitening. We proved mathematically that if the variance spectrum was to decay more slowly then the
population code could not be smooth, allowing small changes in input to dominate population activity. The theory also
predicts larger power -law exponents for lower-dimensional stimulus ensembles, which we validated experimentally.
These results suggest that coding smoothness may represent a fundamental constraint that determines correlations in
neural population codes.

The visual cortex contains millions of neurons, and the patterns of Simultaneous recordings of over 10,000 neurons

activity that images evoke in these neurons form a ‘population code.  To obtain simultaneous recordings of approximately 10,000 cells from
The structure of this code is largely unknown, due to the lack of tech-  mouse V1, we used resonance-scanning two-photon calcium micros-
niques that are able to record from large populations. Nonetheless, the  copy, using 11 imaging planes spaced at 35 pm (Fig. 1a). The slow
population code is the subject of long-standing theories. time course of the GCaMP6s sensor enabled activity to be detected at
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Stringer, Carsen, et al. "High-dimensional geometry of population responses in visual cortex." Nature 571.7765 (2019): 361-365



A Higher-level View

* Basic idea: noise upwardly biases estimation of variance, so
compute covariance for PCA from different trials.

 Compute variance explained by each PC dimension.

* F'it line to eigenspectrum decay in log space.
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A Higher-level View

* Higher slope implies lower—dimensional, correlated coding.
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A Higher-Level View

e Can we do the same analysis with NSD?

* Many ditferences between datasets:
* Mouse calcium microscopy vs. human fMRI.
* Individual neurons vs. voxels.
* Stimulus dimensionality not controlled (some NSD synthetic).
e Source and characteristics of noise ditfer.
* V1 vs. whole brain.

* But these differences could lead to insightful generalizations.



NSD Eigenspectrum

* Sample ‘‘searchlights” of
vertices, map to native surface.

* Compute eigenspectrum decay
of each searchlight.
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NSD Eigenspectrum

* Sample ‘‘searchlights” of

vertices, map to native surface.

* Compute eigenspectrum decay
of each searchlight.

—— fVTC NSD CV
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NSD Eigenspectrum

NSD Fit 20 Dimensions

(NSD - RS) Fit 20 Dimensions

RS Fit 20 Dimensions




Open Questions

* Can we explain, using stimuli features, the low-dimensional
activation structure seen in NSD PC maps?

e Are principal components, the orthogonal directions of maximal
variation, “meaningful” in themselves?

* Is it meaningtul to interpret the eigenspectral decay of IMRI
data’

* What are the proper random controls?

* How might we introduce stimulus dimensionality back into such
spectral analyses?”



