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Motivation
Measuring progress in science and technology

• The post-war era has witnessed unprecedented advances in science and technology.

• But measuring the pace and extent of this progress is an open problem. 

• Some observers suggest the pace of progress is slowing (Bloom et al., 2020; Gordon, 2017).

• We offer several explanations for why, which align with previous hypotheses, including
• the most important/easiest discoveries have already been made (Cowen, 2011), and
• the (re)-combinatorial growth of knowledge is a burden on scientists and technologists (Jones, 2009).

• From these observations, we propose a new framework for measuring innovation which
• ties innovation to structural gaps in the landscape of scientific and technological knowledge and
• contextualizes innovation according to the combinatorial complexity of its constituent knowledge.



Motivation
Measuring progress in science and technology

• Inspired by theories of recombination, many prior works view knowledge as a network.
• Nodes are knowledge concepts, edges some relationship between these concepts (Ju et al., 2020).
• New insights are generated by bringing together previously-disconnected concepts. 

• While insightful, past work on the network structure of knowledge and innovation is limited.
• Focus on low-level, dyadic relationships among knowledge lacks expressivity. 
• Measurement is typically one-dimensional, masking broader contours of the evolving structure of knowledge.

• Algebraic topology provides a natural framework for measuring progress in science and technology.
• Simplicial complexes generalize networks, representing recombination in a formal and intuitive manner. 
• Persistent homology allows for characterization of the global, multi-dimensional structure of knowledge. 
• Formalizing the decomposition of science and technological networks provides additional insights into their structure. 



Persistent Homology
A brief overview



• The homology of a topological space is a set of invariants describing the structure of the space. 

• PH tracks the birth and death of homological “holes” across a filtration of a simplicial complex. 

• A simplicial complex is a combinatorial set of simplices which themselves generalize triangles.

• A filtration of a simplicial complex is a nested family of simplicial complexes  
related by inclusion such that .

• Persistent homology computes a common basis with which to track the homological features 
which emerge and disappear throughout the filtration.

Persistent Homology
A brief overview



• We can encode networks as simplicial complexes through the flag or clique complex.
• “Fill in” each k-clique of nodes and represent this clique as a (k-1)-dimensional simplex         . 
• The homology (Betti numbers       ) of the resulting simplicial complex is an invariant of the underlying network.

• If the network is weighted, edge weights provide a natural filtration to decompose the network 
as subnetworks induced varying a threshold on the weights. 

Networks as Simplicial Complexes
A brief overview



• Betti numbers, simplex counts, and measures like the Wasserstein distance allow for comparison 
of scientific and technological network structures across time or field.

• Gaps in the structure of scientific and technological knowledge are formally defined.
• Characterized by their topological representatives or their birth simplices and death simplices. 

• Encoding cliques of concepts as simplices 
allows us to track higher-order knowledge 
from atomic concept to knowledge structure. 
• Structure in higher dimensions implies higher 

complexity.

Benefits of Abstraction
Generalizing networks and characterizing structure



Analyses
The Emergence of Higher-order Structure

Topological Measures of Innovation



Emergence of Higher-order Structure
Data

• 630,000 American Physical Society (APS) papers between 1893 and 2018.
• Nodes correspond to PACS codes (e.g., 04.30.-w “Gravitational waves”).
• Edges indicate co-occurrence of two codes on the same paper.
• Edge weights correspond to the (inverse) count of co-occurrences.

• 6.5 million utility patents granted between 1976 and 2017.
• Patents assigned subfield according to their NBER technology categories. 
• Nodes correspond to USPC codes (e.g. 712/10+ “Array processors”).
• Edges indicate co-occurrence of two codes on the same patent.
• Edge weights correspond to the (inverse) count of co-occurrences. 

• Also compute 3-year windowed collaboration networks for both datasets. 

• We create these networks for each year and subfield.
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Emergence of Higher-order Structure
Similar trends across papers, patents, and subfields
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Emergence of Higher-order Structure
Collaboration networks show much less complex growth 
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Emergence of Higher-order Structure
Structure is not explainable by low-order measures or as random processes

Comparison to Random Networks



Mapping Structure to Innovation
Regression on some proxies for innovation

• Data
• APS, N = 390,823 papers between 1980 and 2010
• Patents, N = 3,855,730 patents granted between 1976 and 2010

• Outcomes
• “Hit” publication/patent
• Search depth
• Lexical novelty
• Lexical complexity

• Predictors
• Betti numbers
• Simplex counts

• Specifications
• OLS regression with fixed effects for year and field
• Robust standard errors
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Mapping Structure to Innovation
Regression on some proxies for innovation
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(A) Self-citation ratio
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Model 2
(B) Citation age variation
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(C) Delayed recognition
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(D) New subclass combinations
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Emergence of Higher-order Structure
Summary of observations

• Recent shifts towards higher-order structure in scientific and technological knowledge networks.
• These shifts are robust across datasets and appear in many subfields.

• Until very recently, the shift to higher-order structure is missing in the collaboration networks 
that produce this knowledge.

• This knowledge network structure is distinct from a number of popular random network models. 

• Scientific and technological innovation may be difficult to measure with traditional measures.

• Innovation appears to be taking place at higher levels of knowledge abstraction.



Topological Measures of Innovation
Extending these to time-varying knowledge networks

• Can we measure the innovative nature of a scientific work via its impact on network topology?

• Create knowledge networks using concepts extracted from abstracts of scientific works.
• Using millions of physics paper abstracts from APS and social science papers from Web of Science.
• Each node is a concept (“labor market”).
• Edges are given by co-occurrence of concepts within the abstracts.
• Edge weights correspond to the time of publication. 



Physical sciences
• Key measures of 

innovation are positively 
associated to papers 
which close knowledge 
gaps. 

• Closing recently-created
gaps in knowledge is 
associated with higher 
future citation rates. 

Topological Measures of Innovation
Extending to time-varying knowledge networks



Social sciences
• Key measures of 

innovation are positively 
associated to papers 
which close knowledge 
gaps.

• Lifetime of closed 
knowledge gaps is not 
significantly associated 
with future citation rate.

Topological Measures of Innovation
Extending to time-varying knowledge networks



• Investigating features of topologically-disruptive works in science and technology
• Are gap-closing papers associated to a particular knowledge concepts or particular styles of paper?
• Are there lexical distinctions between the language of gap-closing papers compared to other works?

• Characterizing the topological structures which imply innovation
• Do any particular topological structures imply the opportunity for innovation?
• Are particular knowledge concepts more topologically significant than others? 

• Measuring innovation at the paper level
• Can we summarize a paper’s innovative potential through a topologically-motivated measure?
• Is there a measure of innovative potential at the field level based on the underlying concept network? 
• What knowledge gaps exist in the current network structure of science and technology?

Open Questions and Upcoming Work
Measuring the topological characteristics of innovation


