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Motivation

Measuring progress in science and technology

The post-war era has witnessed unprecedented advances in science and technology.

But measuring the pace and extent of this progress is an open problem.

Some observers suggest the pace of progress is slowing (Bloom et al., 2020; Gordon, 2017).

We offer several explanations for why, which align with previous hypotheses, including

* the most important /easiest discoveries have already been made (Cowen, 2011), and

* the (re)-combinatorial growth of knowledge is a burden on scientists and technologists (Jones, 2009).

From these observations, we propose a new framework for measuring innovation which

* ties innovation to structural gaps in the landscape of scientific and technological knowledge and

* contextualizes innovation according to the combinatorial complexity of its constituent knowledge.



Motivation

Measuring progress in science and technology

* Inspired by theories of recombination, many prior works view knowledge as a network.

* Nodes are knowledge concepts, edges some relationship between these concepts (Ju et al., 2020).

* New insights are generated by bringing together previously-disconnected concepts.

 While insightful, past work on the network structure of knowledge and innovation is limited.

* Focus on low-level, dyadic relationships among knowledge lacks expressivity.

* Measurement is typically one-dimensional, masking broader contours of the evolving structure of knowledge.

» Algebraic topology provides a natural framework for measuring progress in science and technology.

« Simplicial complexes generalize networks, representing recombination in a formal and intuitive manner.
* Persistent homology allows for characterization of the global, multi-dimensional structure of knowledge.

* Formalizing the decomposition of science and technological networks provides additional insights into their structure.



Persistent Homology

A brief overview
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1. INTRODUCTION

An important feature of modern science and engineering is that data of various
kinds is being produced at an unprecedented rate. This is so in part because of
new experimental methods, and in part because of the increase in the availability
of high powered computing technology. It is also clear that the nature of the data
we are obtaining is significantly different. For example, it is now often the case
that we are given data in the form of very long vectors, where all but a few of the
coordinates turn out to be irrelevant to the questions of interest, and further that
we don’t necessarily know which coordinates are the interesting ones. A related
fact is that the data is often very high-dimensional, which severely restricts our
ability to visualize it. The data obtained is also often much noisier than in the
past and has more missing information (missing data). This is particularly so in
the case of biological data, particularly high throughput data from microarray or
other sources. Our ability to analyze this data, both in terms of quantity and the
nature of the data, is clearly not keeping pace with the data being produced. In this
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BARCODES: THE PERSISTENT TOPOLOGY OF DATA

ROBERT GHRIST

ABSTRACT. This article surveys recent work of Carlsson and collaborators on
applications of computational algebraic topology to problems of feature detec-
tion and shape recognition in high-dimensional data. The primary mathemati-
cal tool considered is a homology theory for point-cloud data sets—persistent
homology—and a novel representation of this algebraic characterization—
barcodes. We sketch an application of these techniques to the classification
of natural images.

1. THE SHAPE OF DATA

When a topologist is asked, “How do you visualize a four-dimensional object?”
the appropriate response is a Socratic rejoinder: “How do you visualize a three-
dimensional object?” We do not see in three spatial dimensions directly, but rather
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Statistics, University of Central Information networks are becoming increasingly popular to capture complex
?ﬁil‘??ﬁ;ﬁ?&?ﬂ?ﬁﬁiﬁ s relationships across various disciplines, such as social networks, citation networks, and
available at the end of the article biological networks. The primary challenge in this domain is measuring similarity or
distance between networks based on topology. However, classical graph-theoretic
measures are usually local and mainly based on differences between either node or
edge measurements or correlations without considering the topology of networks
such as the connected components or holes. In recent years, mathematical tools and
deep learning based methods have become popular to extract the topological features
of networks. Persistent homology (PH) is a mathematical tool in computational
topology that measures the topological features of data that persist across multiple
scales with applications ranging from biological networks to social networks.
In this paper, we provide a conceptual review of key advancements in this area of using
PH on complex network science. We give a brief mathematical background on PH,
review different methods (i.e. filtrations) to define PH on networks and highlight
different algorithms and applications where PH is used in solving network mining
problems. In doing so, we develop a unified framework to describe these recent
approaches and emphasize major conceptual distinctions. We conclude with
directions for future work. We focus our review on recent approaches that get
significant attention in the mathematics and data mining communities working on
network data. We believe our summary of the analysis of PH on networks will provide




Persistent Homology

A brief overview

The homology of a topological space is a set of invariants describing the structure of the space.

PH tracks the birth and death of homological “holes” across a filtration of a simplicial complex.

A simplicial complex K is a combinatorial set of simplices which themselves generalize triangles.

A filtration of a simplicial complex is a nested family of simplicial complexes {K; | ¢ € Z}

related by inclusion such that K; C K for ¢ < j .

Persistent homology computes a common basis with which to track the homological features

which emerge and disappear throughout the filtration.
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Networks as Simplicial Complexes

A brief overview

 We can encode networks as simplicial complexes through the flag or clique complex.

* “Fill in” each k-clique of nodes and represent this clique as a (k-1)-dimensional simplex Ag_1 .

* The homology (Betti numbers Bx—1) of the resulting simplicial complex is an invariant of the underlying network.

» If the network is weighted, edge weights provide a natural filtration to decompose the network

as subnetworks induced varying a threshold on the weights.




Benefits of Abstraction

Generalizing networks and characterizing structure

 Encoding cliques of concepts as simplices
allows us to track higher-order knowledge

from atomic concept to knowledge structure.

e Structure in higher dimensions implies higher
complexity.
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* Betti numbers, simplex counts, and measures like the Wasserstein distance allow for comparison

of scientific and technological network structures across time or field.

* Gaps in the structure of scientific and technological knowledge are formally defined.

* Characterized by their topological representatives or their birth simplices and death simplices.



Analyses

The Emergence of Higher-order Structure

Topological Measures of Innovation



Emergence ot Higher-order Structure

Data

630,000 American Physical Society (APS) papers between 1893 and 2018.
* Nodes correspond to PACS codes (e.g., 04.30.-w “Gravitational waves”). S

* Edges indicate co-occurrence of two codes on the same paper.
« Edge weights correspond to the (inverse) count of co-occurrences. thSI C§A

6.5 million utility patents granted between 1976 and 2017.

; ; ; ; ; UNITED STATES
Patents assigned subfield according to their NBER technology categories. PATENT AND TRADEMARK OFFICE

Nodes correspond to USPC codes (e.g. 712/10+ “Array processors”).

Edges indicate co-occurrence of two codes on the same patent. '
Edge weights correspond to the (inverse) count of co-occurrences.

Also compute 3-year windowed collaboration networks for both datasets.

We create these networks for each year and subfield.
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Emergence of Higher-order Structure

Similar trends across papers, patents, and subfields
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Count

Emergence of Higher-order Structure

Collaboration networks show much less complex growth
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Emergence ot Higher-order Structure

Structure is not explainable by low-order measures or as random processes

Network properties
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Mapping Structure to Innovation

Regression on some proxies for innovation

Data

 APS, N = 390,823 papers between 1980 and 2010
e Patents, N = 3,855,730 patents granted between 1976 and 2010

Outcomes

* “Hit” publication/patent
* Search depth

* Lexical novelty

e Lexical complexity

Predictors

e Betti numbers
e Simplex counts

Specifications

* OLS regression with fixed effects for year and field
* Robust standard errors



Coefficient estimate

Mapping Structure to Innovation

Regression on some proxies for innovation
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Emergence ot Higher-order Structure

Summary of observations

Recent shifts towards higher-order structure in scientific and technological knowledge networks.

* These shifts are robust across datasets and appear in many subfields.

Until very recently, the shift to higher-order structure is missing in the collaboration networks

that produce this knowledge.

This knowledge network structure is distinct from a number of popular random network models.

Scientific and technological innovation may be difficult to measure with traditional measures.

Innovation appears to be taking place at higher levels of knowledge abstraction.



Topological Measures of Innovation

Extending these to time-varying knowledge networks

« Can we measure the innovative nature of a scientific work via its impact on network topology?

* Create knowledge networks using concepts extracted from abstracts of scientific works.

» Using millions of physics paper abstracts from APS and social science papers from Web of Science.
* FEach node is a concept (“labor market”).
* Edges are given by co-occurrence of concepts within the abstracts.

 Edge weights correspond to the time of publication.

M Opening
Closing
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Topological Measures of Innovation

Extending to time-varying knowledge networks

All papers Hole-closing papers only

(1) (2) (3) (4) (5) (6) (7) (8)
Pr("hit") Pr("hit") Pr(Nobel Prize) Pr(Nobel Prize) Pr(“hit") Pr(“hit") Pr(“flop™) Pr(“flop")

Physical sciences

* Key measures of

. . .. 1 Closes 1-dimensional hole (1=VYes) 0.0139*** 0.0111** 0.0008 0.0008
Innovation are positive (0.0048) (0.0048) (0.0007) (0.0007)
. d p y Closes 2-dimensional hole (1=Yes) 0.0110*** 0.0077***  0.0007*** 0.0007***
(0.0019) (0.0019)  (0.0002) (0.0002)
aSSQCIate to papers Introduces novel concept pair (1=Yes) 0.0097*** -0.0000
which close knowledge . - (0.0008) (0.0000)
Lifetime of 1-dimensional hole(s) closed (days, log) -0.0092** 0.0119**
gaps (0.0040) (0.0060)
) Lifetime of 2-dimensional hole(s) closed (days, log) -0.0035** 0.0074***
. (0.0016) (0.0024)
o CIOSIHg recently_created Field fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
. k 1 d . Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
gaps 111 Nnowle ge 15 N 373749 373749 373749 373749 2312 16617 2312 16617
associated with hlgher Adjusted R2 0.01 0.01 0.00 0.00 0.03 0.01 0.01 0.01
1 1 Wald tests for topology predictors
future Cltatlon rates' F 22.13 11.25 3.83 3.81 5.37 4.80 3.97 9.06
d.f. 2.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00
p-value 0.00 0.00 0.02 0.02 0.02 0.03 0.05 0.00

Notes: Estimates are from ordinary-least-squares regressions (linear probability models). Models 1-4 evaluate the probability of a “hit" and Nobel
Prize winning paper as a function of whether the paper closes a 1- or 2-dimensional hole or introduces a novel pairing of concepts in the knowledge
network of its field. Hit papers are defined (using a 0/1 indicator variable) as those that are cited more than (or equal to) 95 percent of all other
papers across fields and years in the first five years post publication. To allow time for the accumulation of citations, we limit the sample to papers
published before 2010. Models 5-8 evaluate the probability of a “hit” and “flop” paper as a function of the lifetime of the hole closed. Hole lifetime
is only defined for papers that close holes of a given dimension, and therefore we estimate separate models for the lifetime of 1- and 2-dimensional
holes (only a small number of papers close holes of both dimensions). Flop papers are defined (using a 0/1 indicator variable) as those that are cited
less than (or equal to) 95 percent of all other papers across fields and years in the first five years post publication. For more details on variables,
see Table ??. Wald tests reported below each model evaluate whether the included topological predictors significantly improve model fit. Robust
standard errors are shown in parentheses; p-values correspond to two-tailed tests.

*pj0.1; **pj0.05; ***p;0.01



Topological Measures of Innovation

Extending to time-varying knowledge networks

Social sciences

* Key measures of
innovation are positively
associated to papers
which close knowledge

gaps.

e Lifetime of closed
knowledge gaps is not
significantly associated
with future citation rate.

All papers Hole-closing papers only
(1) (2) (3) (4) (5) (6)
Pr(“hit”) Pr(“hit") Pr(*hit") Pr("hit") Pr(“flop”) Pr(“flop”)
Closes 1-dimensional hole (1=Yes) 0.0103*** 0.0034***
(0.0013)  (0.0013)
Closes 2-dimensional hole (1=Yes) 0.0141*** 0.0076***
(0.0008)  (0.0009)
Introduces novel concept pair (1=VYes) 0.03171%**
(0.0005)
Lifetime of 1-dimensional hole(s) closed (years) -0.0002 0.0017
(0.0007) (0.0010)
Lifetime of 2-dimensional hole(s) closed (years) -0.0006 -0.0005
(0.0005) (0.0006)
Field fixed effects Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
N 894449 894449 37905 156906 37905 156906
Adjusted R2 0.02 0.02 0.02 0.02 0.04 0.03
Wald tests for topology predictors
F 186.19 44 .22 0.07 1.09 2.67 0.54
d.f. 2.00 2.00 1.00 1.00 1.00 1.00
p-value 0.00 0.00 0.80 0.30 0.10 0.46

Notes: Estimates are from ordinary-least-squares regressions (linear probability models).

Models 1-2 evaluate the

probability of a “hit” paper as a function of whether the paper closes a 1- or 2-dimensional hole or introduces a novel
pairing of concepts in the knowledge network of its field. Hit papers are defined (using a 0/1 indicator variable) as
those that are cited more than (or equal to) 95 percent of all other papers across fields and years in the first five years
post publication. To allow time for the accumulation of citations, we limit the sample to papers published before
2010. Models 3-6 evaluate the probability of a “hit” and “flop” paper as a function of the lifetime of the hole closed.
Hole lifetime is only defined for papers that close holes of a given dimension, and therefore we estimate separate
models for the lifetime of 1- and 2-dimensional holes (only a small number of papers close holes of both dimensions).
Flop papers are defined (using a 0/1 indicator variable) as those that are cited less than (or equal to) 95 percent
of all other papers across fields and years in the first five years post publication. For more details on variables, see
Table ??7. Wald tests reported below each model evaluate whether the included topological predictors significantly
improve model fit. Robust standard errors are shown in parentheses; p-values correspond to two-tailed tests.

*pi0.1; **p;0.05; ***p;0.01



Open Questions and Upcoming Work

Measuring the topological characteristics of innovation

» Investigating features of topologically-disruptive works in science and technology

* Are gap-closing papers associated to a particular knowledge concepts or particular styles of paper?

* Are there lexical distinctions between the language of gap-closing papers compared to other works?

e Characterizing the topological structures which imply innovation

* Do any particular topological structures imply the opportunity for innovation?
* Are particular knowledge concepts more topologically significant than others?

e Measuring innovation at the paper level

 (Can we summarize a paper’s innovative potential through a topologically-motivated measure?
* Is there a measure of innovative potential at the field level based on the underlying concept network?
 What knowledge gaps exist in the current network structure of science and technology?



